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Coordinated Hydrolysis Explains the Mechanical Behavior of Kinesin
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ABSTRACT The two-headed motor protein kinesin hydrolyzes nucleotide to move unidirectionally along its microtubule track
at speeds up to 1000 nm/s (Saxton et al., 1988) and develops forces in excess of 5 pN (Hunt et al., 1994; Svoboda et al., 1 994a).
Individual kinesin molecules have been studied recently in vitro, and their behavior has been characterized in terms of force-
velocity curves and variance measurements (Svoboda and Block, 1 994a; Svoboda et al., 1 994b). We present a model for force
generation in kinesin in which the ATP hydrolysis reactions are coordinated with the relative positions of the two heads. The
model explains the experimental data and permits us to study the relative roles of Brownian motion and elastic deformation in
the motor mechanism of kinesin.

INTRODUCTION

Any mechanism that proposes to explain the operation of the
motor protein kinesin is constrained by the following recent
observations: (i) the protein moves unidirectionally along a
microtubule protofilament (Ray et al., 1993); (ii) it can
achieve speeds of nearly 1000 nm/s at low loads, decreasing
to zero velocity at a stall force between 5 and 6 pN, which
is practically independent of ATP concentration (Hunt et al.,
1994; Svoboda and Block, 1994a); (iii) the variance in its
trajectories at low loads increases linearly with time at a rate
significantly below that expected for a Poisson stepping pro-
cess (Svoboda et al., 1994b). Indeed, Svoboda et al. have
measured the entire force-velocity curve at several ATP
concentrations (Svoboda and Block, 1994a). These data,
along with their experiments measuring the growth of the
trajectory variance, provide a strong constraint on pro-
posed mechanisms.

Biochemical studies generally measure only the aggregate
hydrolysis rate of all of the ATPase sites. Recently, however,
efforts have been made to distinguish between the ATPase
rates of each head, and they do not appear to be operating
independently (Gilbert et al., 1995; Hackney, 1994; Johnson
et al., 1994). Here we present a model in which coordinated
hydrolysis naturally occurs.!
One question common to all motor models is the relative

roles of Brownian motion and elastic deformation energy in
transducing chemical bond energy into a directed force.
Some models of molecular motors rest almost entirely on
rectifying Brownian diffusion to produce a thrust, or torque
(Cordova et al., 1991; Huxley, 1957; Meister et al., 1989;

1 There is no direct evidence that a single-headed kinesin or dynein mol-
ecule, acting alone, can drive a load. However, Gelles et al. (1994) have
reported that several single-headed kinesins can move a microtubule in an
in vitro assay. These single heads are mechanically coupled via the micro-
tubule, so the motion of one influences the others.
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Peskin et al., 1993). Such models cease to operate at zero
temperature. Others ascribe the displacement of the motor to
a "power stroke" in the form of a conformational change in
the motor induced by nucleotide binding and/or hydrolysis
(Finer et al., 1994; Rayment et al., 1994) or by binding to the
microtubule track (Huxley and Simmons, 1971). Models of
this sort continue to operate at zero temperature. (Of course,
hydrolysis would cease as T -* 0, hence these statements
apply only to the models.) This is a fundamental issue in
understanding motor function, but it is extremely difficult to
resolve experimentally (Hunt et al., 1994). The model we
present incorporates both conformational and Brownian con-
tributions, so that we can investigate the dominant contri-
bution of each mechanism. We find that, to fit the experi-
mental data, there must be an elastic (e.g., enthalpic)
deformation that moves each head at least 80% of the dis-
tance between binding sites, the remaining distance being
accomplished by Brownian diffusion.

DESCRIPTION OF THE MODEL

Fig. 1 shows the essentials of the mechanical model. We
assume that only one head of the motor can bind to each
13-tubulin site at a time. These sites are located at a distance
L = 8 nm apart. The two heads of the motor are connected
at a hinge. We assume that the hinge swings freely within its
range of motion but that this range is limited so that the
distance between the heads as measured along the microtu-
bule cannot be greater than L. The two heads can freely pass
each other. As in the experiments of Svoboda et al., the motor
tows a latex bead, which is joined to the hinge of the motor
by an elastic tether. A load force, f, opposing the motion of
the motor, is applied to the bead by a laser trap (Svoboda and
Block, 1994a).

In the model, each head of the motor has two possible tubulin
affinity states, denoted S and W. In state S, the head has a high
affinity for the (B-tubulin sites. It will bind to the first empty site
that it encounters and remain there until a transition to state W
occurs. In state W, the head has a low affinity for the ,B-tubulin
sites; it diffuses along the microtubule and is oblivious to these
sites, not binding even if it encounters an empty one.
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FIGURE 1 The mechanical model consists of two heads joined by a

free hinge attached to a bead by an elastic linkage. The heads face in
the same direction, which defines the forward direction of the motor as

a whole. We assume that the microtubule track has discrete sites, located
8 nm apart, at which the kinesin heads may bind reversibly (the asym-

metry of the binding sites is indicated by their shape). Only one head
at a time may be bound to any given site, and we assume that the size
of the heads and the hinge connecting them makes it impossible for the
heads to reach more than 8 nm apart. Thus, the only way that both heads
can be bound is if they occupy adjacent sites on the tubulin polymer.
Finally, we assume that the two heads can move freely past each other,
like the legs of a person walking. The elasticity of the heads is modeled
by a pair of linear "ankle" springs, whose strain state is indicated by their
shading (light = unstrained, dark = strained). The model setup is in-
tended to mimic the experimental setup of Svoboda and Block (1994);
however, the drawings are not to scale. The top panel shows the motor
in state S * S. The back head is in its forward-leaning state (the gray

spring is relaxed); the front head, because it is hinged to its partner, is
forced into its backward-leaning state (the strain is indicated by a black
spring). In the elastic potential well of the bead-motor linkage, the bead
is subject to Brownian fluctuations. (middle) The motor can make for-
ward progress by detaching the back head (entering stateW S), where-
upon the front head relieves its strain by swinging forward; this is the
power stroke (and puts the motor in state S * W). At some point, the head
regains its affinity for the track, and the motor reenters state S * S. The
new forward head then rapidly diffuses to the first empty site it en-

counters (in the lower panel this is shown as the forward site). Note that this
sequence represents an 8-nm step for the motor as a whole, because the
average position of the two heads has advanced 8 nm. Note that the act of
docking has put head A into a strained configuration. Alternatively, the
motor can make an 8-nm backward step (not shown) by picking up the front
head, swinging it backwards, and reattaching it to the track.

The transition from state S -- W involves ATP hydroly-
sis. We shall assume that the hydrolysis rate is greater for the
back head than for the front head. This is one of the two
mechanisms that drives the motor forward. The other mecha-
nism involves the geometry of a kinesin head bound to the
microtubular track (in state S). We assume that the preferred
configuration of the bound head is one in which the head
leans forward. When the motor has both heads bound, the
back head is in this favorable configuration, but the front
head is forced into a strained, backward-leaning configura-
tion because of its hinged connection to the back head. This
strain on the front head is relieved when the back head
switches to its weak-binding state and detaches. Then the
front head, still in state S, can relax by rotating forward and
pulling the formerly back head forwards. This is the "power
stroke" of the motor's mechanical cycle.2

THE MECHANOCHEMICAL CYCLE

We can now describe the mechanical cycle of the motor as
follows (Fig. 1). We start from the state S * S, in which both
heads are bound to the microtubule at adjacent sites, 8 nm
apart. In this state, the motor is rigid and the latex bead
undergoes Brownian motion in the potential well established
by the elastic tether of the bead to the hinge of the motor. The
next event that can happen is the transition S -* W, in which
one of the two heads detaches. As explained above, this re-
quires ATP hydrolysis, and the transition is more likely to
occur in the back head. This could occur, for example, be-
cause the strain induced in the front head adversely affects
its hydrolysis site, slowing or arresting its catalytic activity.
Once a head is in state W, it is free to move, and a coupled
Brownian motion of that head and the bead occurs. The po-
tential energy of this coupled Brownian motion involves not
only the elastic tether that connects the bead to the hinge, but
also the elasticity of the bound head (i.e., the spring in Fig.
1) that favors the forward-leaning configuration of the head
in state S. The motion of the free head is restricted to the
interval (-L, L) with respect to the position of the bound
head. This situation persists until the transition W -> S oc-
curs, at which point the free head recovers its high affinity
for the (empty) binding sites on the microtubule.3 The free
head then binds to the first site that it encounters. The two
sites that are within reach are the ones 8 nm in front and 8

2 Note that the hand-over-hand gait we have assumed requires that the for-
ward head generates the power stroke by pulling the rear head. This is unlike
macroscopic walking, which is "ballistic" (i.e., depends on inertia). Without
inertia, the rear head cannot contribute to the power stroke once it detaches.
3Another possibility in this situation is that the one remaining bound head
hydrolyzes ATP and makes the transition S - W. Then the motor is in the
state W * W and dissociates from the microtubule. Such events are in fact
observed (Svoboda and Block, 1994a). Their probability can be kept low in
the model by assuming that the rate of the S - W transition depends on the
angle of the bound head in such a way that the rate is low at the intermediate
angles likely to be assumed by a bound head when the other head is freely
diffusing along the microtubule. For purposes of this paper, we assume that
the transition S *W -* W - W does not occur.
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nm in back of the bound head. It is biased toward the more
posterior of these sites by the applied load, but toward the
more anterior site by the forward-leaning tendency of the
bound head.

Although the mechanical cycle does not uniquely deter-
mine the kinetics, Fig. 2 shows how the mechanical cycle in
Fig. 1 is consistent with the kinetic scheme proposed by
Gilbert et al. (Gilbert et al., 1995; Johnson and Gilbert, 1994).
The key parameters of the model are:

* Ib = unbinding rate constant for the back head S W
* f = unbinding rate constant for the front head S W
* a = rebinding rate constant for either head W -- S
* L = distance between the binding sites on the microtubule
*x0 = equilibrium position of the hinge with respect to the

bound head when only one head is bound. We define the
power stroke as the distance the free head moves from its
original position to get to that equilibrium position (power
stroke = L + 2xo).

* f = applied load

The two asymmetries that drive the motor are (i) 1b > Of,
which expresses the greater ATPase activity of the back head
of the motor, and (ii) xo > 0, which expresses the forward-
leaning tendency of a bound kinesin head; this generates the
"power stroke" of the motor. The first of these inequalities
makes the back head more likely to detach, and the second
one makes it more likely to reattach as a front head. Under
the combined influence of these two asymmetries, the motor
marches systematically forward.

ANALYSIS AND SIMULATION OF THE MODEL

We have numerically simulated the motion of a single two-
headed kinesin molecule towing a latex bead against an ap-
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FIGURE 2 The mechanical cycle mapped onto the kinetic cycle proposed
by Gilbert and Johnson (1994a, b). Their pathway for a single head is shown
boxed. When the two heads are joined by a hinge, their cycles are correlated.
The diagram shows one possible sequence of states wherein the energy for
driving the power stroke derives from the binding free energy of the motor
to the tubulin track, analogous to the Huxley-Simmons model for myosin
(Huxley and Simmons, 1971). Fast reactions are indicated by double arrows,

whereas slow reactions are indicated by separate arrows. The model pa-

rameters a and can be determined from the kinetic parameters a' and (3'

by taking into account the equilibrium constants of the fast reactions.

plied load. The direction in which the motor steps, and the
waiting times between steps, are stochastically determined as
follows. In state (S * S) the motor can step forward by de-
taching its back head, and it can step backward by detaching
its front head. The rate constants for these competing tran-
sitions are b and f, respectively, independent of the posi-
tion of the bead. Thus, the probability of a forward step from
state (S *S) -- (S *W), is b/(fb + 1), whereas the prob-
ability of a backward step of this type is (Ab + 1f). The
waiting time for the transition (S * S) > (S * W) is expo-
nentially distributed with mean l/(b + ,Bf), independent of
the direction of the step.
The situation with one head bound, the other free (i.e., state

(S - W)) is more complicated. We assume that the free head
diffuses much more rapidly than the bead; this implies that
it equilibrates with the instantaneous position of the bead. At
the instant of the (S - W) -+ (S *S) transition, the free head
begins its diffusive search for an empty site. Because this
search takes place so rapidly that the bead has essentially no
time to move, we can perform a "fast scale" analysis to evalu-
ate the probability that the first site encountered is the front
site and, hence, that the transition (S *W) 3 (S - S) is a for-
ward rather than a backward step (see Appendix). This prob-
ability depends on the instantaneous position of the bead
(therefore, it depends indirectly on the load force that is ap-
plied to the bead). The waiting time for the (S *W) -- (S - S)
transition is exponentially distributed with mean 1/a.
Now consider the motion of the bead. In state (S - S), the

motor is rigid, so the bead executes a one-dimensional
Brownian motion in a given potential. In state (S * W), the
Brownian motions of the bead and the free head are coupled.
Because the diffusion coefficient of the free head is much
greater than that of the bead, we can compute a free energy
that serves as the effective potential for the Brownian motion
of the bead in state (S * W). Thus, in both states the bead
executes Brownian motion in a potential. The particular po-
tential felt by the bead, however, varies depending on the
state and position of the kinesin motor to which it is attached.
The foregoing ideas can be used not only to simulate the

motion of an individual kinesin motor but also to analyze the
behavior of an ensemble of such motors. To do the analysis,
however, we make one further simplifying assumption: that
the diffusion time of the bead over distances on the order of
8 nm is brief in comparison with the mean lifetimes of the
states S and W, i.e., the reaction rates a and f3 that summarize
the hydrolysis cycle are slow in comparison with the rate of
diffusion of the bead over the step length of the motor. Under
this assumption, we no longer need to track the diffusion of
the bead, but can instead average over bead positions ap-
propriately weighted by the equilibrium position density of
the bead. In particular, we average over the positions of the
bead when computing the probability that a free head will
find a front or a back binding site when it reattaches to the
track. This reduces the motion of kinesin to a Markov-chain,
for which we can calculate the mean displacement and also
the rate of growth of the variance in the position of the motor,
as time goes by.
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In the Appendix, we compute the following simple ex-
pression for the mean velocity of the motor

(V(fa))= 8 aL aL+'( + )(P)-2)
2\a+ y a+y\ "2]
Reaction
asymmetry

Power stroke
(1)

where y = ,Bb + f is the total hydrolysis rate of both heads
and 6 = f3b- f is the difference in the rate of hydrolysis
between the two heads. The quantity P(f) is the probability
that a head that has just made the W -* S transition (i.e., has
regained its high affinity) will find the empty binding site in
front of the bound head instead of the one behind the bound
head. Because the load, f, opposes the motion, P is a de-
creasing function of f.4 For a particular experiment at con-
stant load, P is a constant.

In addition to the mean velocity, higher moments can be
calculated; in the Appendix, we derive an expression for the
growth rate of the variance:
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RESULTS

Fig. 3 shows a simulated trajectory of a bead attached to the
motor. This sample path reflects the stochastic motion of
the bead-motor assembly. The motor is stepping in 8-nm
increments; however, if the bead-motor spring is too weak,
it is difficult to discern those steps because they are concealed
in the Brownian fluctuations of the bead. Using the laser trap,
Svoboda and Block were able to stiffen effectively the bead
spring and reveal the underlying stepping dynamics. The tra-
jectory in Fig. 3 was generated with a stiffer bead spring than
the force-velocity and variance calculations (see below) to
reveal the steps.

Fig. 4 shows the fits of the model to the force-velocity data
of Svoboda and Block (2) at high (2 mM) and low (10 ,uM)
ATP concentrations. The model was initially fit to the high
[ATP] data using experimentally determined values for all
parameters except for the reaction rate asymmetry parameter,
8, and the mechanical asymmetry parameter, xo. Then to fit
the data for the low [ATP] force-velocity curve, only the net
reaction rate, 'y, was changed while holding the ratio I'Ib

constant (so that 8 changes in proportion to y). To fit the
force-velocity data, we found that it was necessary to impose
both a reaction rate ratio 3WIb C 0.05, and also a power
stroke that would carry the free head at least 80% of the

' P also depends on the size of the power stroke and the elastic stiffness of
the heads and of the bead-motor linkage.

0 0.005 0.01 0.015 0.02 0.025 0.03
time [sl

FIGURE 3 A stochastic simulation of the model equations illustrating the
statistical nature of the motor's progress. In this simulation, the time step
was 7 X 10-7 S; the plot shows computed points sampled every 0.1 ms. The
8-nm steps are not discernible if the bead-motor spring is weak so that the
steps are concealed in the bead's thermal fluctuations; therefore, in this
simulation the bead-motor linkage was assigned the stiffness Kb = 0.8 pN/
nm, which is greater than the values used in Figs. 4 and 5, so that the stepping
dynamics would be clearly visible.

distance to the next binding site; neither asymmetry by itself
would suffice to fit the data.

Fig. 5 shows the fit of the model to the variance data of
Svoboda et al. (1994b). If the kinesin motor were progressing
by random Poisson steps of length L at rate fb' then the
variance in its position would grow linearly with time at a rate
L2Ib (see the discussion after Eq. A.30 in the Appendix). The
actual rate, both for kinesin and for the model, is considerably
less than this, an indication that more than one rate-limiting
step is involved in each 8-nm step of the motor. At present,
only low load variance data are available. If variance data
were collected at several loads, those data, together with the
force-velocity data that are already available, would provide
a severe constraint on the model parameters and, indeed, a
severe test of the model itself.

DISCUSSION

Fitting the model to the above data imposes two constraints
on the operation of the motor. First, elastic deformation of
the bound kinesin head (the "power stroke") accomplishes at
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FIGURE 4 The predicted load velocity curves from Eq. 1 for high (2 mM)
(top) and low (10 ,M) ATP concentrations (bottom). The data are from
Svoboda and Block (1994). The parameter values used to fit the data were:

a = 400 s-1, y = 105 s-1, 8 = 100 s-1, Kb (stiffness of bead-motor
linkage) = 0.25 pN/nm (Svoboda and Block, 1994), xo = 3 nm (cor-
responding to a power stroke of 14 nm), Km (head elasticity) = 1 pN/nm.
All parameters are the same for the two data sets except that the net
hydrolysis rate, y, was decreased from 105 to 11 s-5, while maintaining
the ratio ff/Ib constant. Note the S-shaped character of the force-
velocity curve: the kinesin motor is insensitive to load at low loads, and
this aspect of its dynamics is captured by the model.

least 80% of the step, the remaining 20% being supplied by
thermal motion. Thus, it is clear that a substantial elastic
shape change is required to bias the motor's walk sufficiently
to generate the observed force-velocity behavior. The un-

certainty as to the exact values for the head elasticity and the
bead-motor connection do not affect this very much, because
altering their values over a wide range could not compensate
for too small a power stroke. Second, fitting the model to the
data requires that the rear head be at least 20 times more

likely to bind and/or hydrolyze itsATP than is the front head;
the model is insensitive to asymmetries much above this
level.
The principle enunciated here is simple: a pair of elasti-

cally coupled ATPases can function as a powerful motor if
their individual asymmetries and the manner in which they
are coupled makes a forward step more likely than a back-
ward one. We have suggested two mechanisms for this: hy-
drolysis reaction asymmetry and an elastically driven power
stroke. Although either is sufficient to drive the motor for-

tme [1

FIGURE 5 Comparison of simulated trajectory variance (erratic line) to
the measured trajectory variance (0) (4). The least-squares slope of the
experimental data is 3120 nm2/s, and the slope of the variance predicted by
Eq. 2 is 3560 nm2/s. A Poisson stepper would have a slope of A3bL2 = 6400
nm2/s. All parameters are the same as in b except that here Kb = 0.03 pN/nm.
The real bead-motor linkage acts like a nonlinear spring, so its stiffness is
load-dependent. The variance measurements in (4) were made at low load.

ward, both are needed to fit the data. Both mechanisms are

related to the angle that a bound kinesin head makes with the
track. When both heads are bound, the geometry of the motor
as a whole dictates that the back head is leaning forward
whereas the front head is leaning backward. We assume that
a head leaning forward is more likely to hydrolyze ATP and
hence to detach, and that the forward-leaning configuration
has a lower free energy than the backward-leaning configu-
ration. This leads to a preferred sequence of events in which
the back (forward-leaning) head binds and splits ATP, and
detaches from the track. Once this has happened, the front
(backward-leaning) head is free to relax by rotating forward,
and this biases the diffusion of the free head in the forward
direction. This makes the free head more likely to find the
binding site 8 nm in front of the bound head, not the site 8
nm behind the bound head, where it started.
Why should a forward-leaning kinesin head hydrolyze

ATP faster than a backward-leaning head? It is known that
kinesin bound to tubulin is a far more effective ATPase than
kinesin alone, and it is likely that the ATP-binding site is
close to the tubulin-binding site, as it is in myosin (Rayment
et al., 1993). Therefore, it is likely that the ATPase site
interacts strongly with the tubulin-binding site on a ki-
nesin head. Thus, it would not be surprising if the ATPase
activity depended on the specific geometry of the kinesin-
microtubule interaction.
The success of the asymmetric reaction rate model gives

encouragement to the view that other molecular motors may
operate on the same principle.The pivoting cross-bridge pic-
ture is almost irresistible for kinesin, myosin, and dynein,
given their molecular geometries (Rayment and Holden,
1994; Rayment et al., 1993); however, for other motors the
geometry is not so suggestive. For example, DNA and RNA
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polymerases present no obvious protuberances; however,
they are multimeric and hydrolyze nucleotide at a high rate.
Therefore, it is worth considering the possibility that these
motors operate by two or more hydrolysis sites whose ac-
tivities are correlated. Indeed, Vale has noted that for many
progressive enzymes it appears necessary to coordinate the
binding activities of several sites on different subunits (Vale,
1994). This hypothesis finds precedent in the multiple, co-
ordinated hydrolysis sites found to control the opening and
closing of the CFTR chloride channel (Anderson et al., 1992;
Hwang et al., 1993; Nagel et al., 1994). Finally, we note that
both Hackney (1994) and Gilbert and Johnson (1994, 1995)
have found evidence from kinetic studies that the two kinesin
heads alternate their hydrolysis cycles. Our mechanical study
complements and reinforces their conclusions.
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APPENDIX

Derivation of the model equations
Consider the model shown in Fig. 1. Two heads are connected by a hinge
to which is attached a large bead by a spring. The motor is asymmetrical,
so that we can distinguish the front from the back. The track is also asym-
metrical; the motor and the track fit together such that the motor faces in
the direction of increasing x.

The track has equally spaced binding sites separated by a distance L =
8 nm. Only one head may bind to a given site, and the heads may move freely
past one another. The coordinates of the heads are x = xi and x = x2. The
hinge is always located halfway between the heads: xh = (xl - x2)/2. We
assume that the hinge swings freely within its range of motion, but that it
imposes the constraint: - x2 L.

The motor tows a 0.5-,um bead whose coordinate is denoted x3. The bead
is connected to the hinge by a linear spring of stiffness Kb. A load force, f,
is applied to the bead (positive to the left). Let D3 be the diffusion coefficient
of the bead. We condense the hydrolysis cycle into two states, which we
denote 0 and 1, with transition rate constants shown in Fig. 6 a.

In state 0, a head can glide freely along the track and does not interact
with the binding sites. In state 1, the head binds to the first empty site it
encounters. Once bound, it remains bound at the same site until the transition
1 -* 0 occurs.
We shall assume that the rate constant for the transition 1 -* 0 depends

on the angle that the bound head makes with the track; this angle is de-
termined by the relative position of the hinge and the head. Note that

01 = 3(xh - XI) = P(I(xI + X2) -XI) = 13[(X2 - x)/2] (Al)

Oib if Ob f

a(1-P) aP a(1-P) aP

(c)

FIGURE 6 Schematic of the model geometry (not to scale). (a) The state
transition diagram for a single head. 0 is the detached state, and 1 the
attached state. ca is the attachment rate constant, and ,3 is the detachment rate
constant, which may depend on the angle of the head as measured by the
longitudinal displacement of the hinge from the head, xh-x. (b) (left) The
transition diagram between the two states (01) and (11). of and lb are the
rate constants for detaching the front and back head from the track, re-
spectively. In state 01, when only one head is bound, there is another pos-
sibility (not shown) in which the single-bound head detaches, terminating
the walk. We shall ignore this possibility here, although it is easily included.
a is the rate constant for binding the free head to the track, and p is the
probability that it binds in front of the bound head (so that 1 - p is the
probability of binding in back of the front head). Clockwise arrows denote
forward progress of the motor, and counterclockwise arrows represent back-
wards progress. (right) The probability branching diagram showing the
progress of the motor. We define the motor position, xm, as the position of
the hinge when both heads are bound (state 11) and the position of the bound
head when only one head is bound (state 01). Thus, xm changes in increments
of ±L/2 during the transitions. Over a full cycle, 11 -* 11, however, the
change in xm is 0 or ±L. (c) The Markov chain describing the movement
of the motor. State j denotes Xm = jL. Integer values of j (filled circles)
correspond to states with both heads bound; half-integer values correspond
to states with one head bound.

and

/32 =-3(Xh-X2) = 3('(Xl + X2) -X2) = X3[(X- X2)/2] (A2)

This provides a mechanism of interaction between the two heads. For ex-
ample, suppose that (3 is an increasing function; then xi < x2 implies (3, >
(32. This means that the back head is more likely to detach than the front head.

If we ignore the labels "1" and "2" of the heads, the motor as a whole
has but three distinguishable states: 11, 01 10, and 00. In state 00, however,
both heads are free, and the motor dissociates from the track, terminating
the walk. Therefore, we need consider only states 11 and 01-10. The pos-
sible transitions and the progress of the motor can be depicted as shown in
Fig. 6 b.

To determine the motion of the bead, we must give a more detailed
analysis of states 11 and 01 and derive expressions for the rate constants of
the transitions, some of which depend on the position of the bead.

State 11: both heads bound
In this state, the motor is rigid; its heads occupy adjacent sites on the track
and the hinge is halfway between them. Let xm be the position of the hinge.
Then the front head is at Xm + L/2 and the back head is at Xm- L/2. In this
configuration, the bead diffuses with diffusion coefficient D3 in the potential
of the bead-motor spring:

4 i(X3, Xm) = tX3 - Xm) + ½/2Kb(x3 - Xm)2 (A3)
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The rate constants for leaving state 11 are as follows:

detachment rate of back head:

fb = 3(Xm- (Xm- L/2)) = ,B(L/2) (A4)

detachment rate of front head:

Of = 3(Xm - (Xm + L/2)) = ,B(-L/2) (AS)

State 01 =10: one head bound, one head free

In state 11, xm was the coordinate of the hinge. However, in state 01 we

redefine xm as:

xm = coordinate of the bound head.

and we set

x = coordinate of the free head.

Thus, xm jumps ±L/2 during any transition between state 01 and state 11.
Between transitions, xm is constant.

Although the motor is in state 01, we have a coupled diffusion involving
the free head (located at x) and the bead (located at x3), on the domain given
by Xm- L C x C Xm + L and -oo < x3 < °o. The potential energy of this
coupled diffusion process is

#01 (X, X3, Xm)

=ftx3 -KXm)+ b(X + m

2
) w Xm+ m) (A6)

Xm) + 2 2 (X3 - Xm)) + w( 2)

Here W is the potential energy of the interaction between the bound head
and the track. This depends on the angle of the head, which is determined
by the relative position of the hinge with respect to the bound head. The
second form of +00 in the above equation emphasizes the fact that 400(x, X3,
xm) actually depends only on the two variables x -xm and x3 -xm
We can simplify the model considerably by considering the situation in

which the diffusion coefficient, D, of the free head is much larger than the
diffusion coefficient of the bead, D3. In fact, we shall letD -m o. In this limit,

the free head equilibrates instantaneously, forming a probability cloud over

the interval [xm - L, Xm + L] according to the Boltzmann density function:

(- 01 (x,X3 Xm).)

J( exp( kT ) dx'

(A7)

where kI is Boltzmann's constant and T is the absolute temperature. The
notation p(x x3, xo) indicates that this is a conditional probability density
function, given x3 and xm. As x3 changes because of the bead diffusion, the
probability cloud shifts.

In this limit, it can be shown that the bead diffuses with diffusion coefficient
D3 as though it were in the effective potential (free energy) given by

C~+L,(PO,(XIX3,Xm)

o1(X3,x.) =-kBTlogJ exp kT dx. (A8)

This determines the statistical motion ofthe bead throughout the duration of state
01.

The rate constant for the rebinding of the free head to the track is given
by the constant a. But we must determine whether the head binds at xm +
L or atxm -L. Let

p(x3, Xm) = probability that the free head binds at x = Xm + L

1- p(x3, xm) = probability that the free head binds at X = Xm- L

where x3 is the position of the bead and xm is the position of the bound head
at the instant when the transition to the high affinity state occurs. We can

compute p(x3, x,) from the following considerations.
As soon as the free head enters the high affinity state, it diffuses rapidly until

it encounters an empty site on the track, whereupon it binds. The two sites
available to it are at the ends of its diffusion interval, xm ± L. On the time scale
of the average motor motion, this process is essentially instantaneous (D -m cc);

however, we can analyze it on afast time scale as follows.'
Let T denote the fast-scale time measured from the instant that

the free head enters the strong binding state, and let c(x, T X3, Xm) and
J(x, T X33, Xm) be the probability density and probability flux, respec-
tively, of the free head for T > 0. On the fast scale of T, the positions
of the bead, x3, and the bound head, xm, are constant. c and J obey the
following conservation equation:

ac ad ac i1 a40,
aT- x J =-D\dx +kaxk)Tax

C(X,OIX3 Xm) = P(X X31 X.) (A9)

c(xm-L, TI X3 Xm)=C(Xm + L, TI X3, Xm) = O.

The probability of binding to the next site, rather than the previous site,
is computed from

x

P(X31 X.) = AJx. + L, TI X3 x.) dT. (AlO)

To obtain this, we integrate the diffusion equation with respect to T over

(0, mo) and introduce the quantity

fx

F(x X31X.Xm) = IJ(X, T X31XX) dT. (All)

The absorbing boundary condition implies c -b 0 as T -x cc, and so

aF
0 - p(xl X3 Xm) + -(x X3, Xm) =O.

From this it follows that

(A12)

rxm+L

F(xI X3X.Xm) = F(xm + LI X3 Xm) p(X X3 x.) dx'

rxm+L

= P(X3, Xm.) p(Xt I X3 Xm) dx'

From the definition of the flux, J, we have

Jexp( k-) = D c(exP( k-))

J exp( k-T) dx 0

(A13)

(A14)

Ix +L

J F(x X31 X.,)exp( <>°) x = O
-,L kBT

The last step was obtained by integrating with respect to time from 0
to infinity. This may also be written

Ixm+L

F(xI X3 Xm)0(X X3, Xm) dx = 0
xm-L

(A15)

I The binding of the head to the tubulin site is electrostatic and hydrophobic,
so binding cannot take place until the head diffuses within about a Debye
length of the site (<1 nm).
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The moment equations are:

(401 (x, X3X Xm)

a(Ilx',xm) =- t k5T / (A16)
U(X131Xm r + (+01(x x3 Xm )dO\XXS~Xm = fY'~exp ( koi T, (m)cx'

Substituting (A.13) into (A.15) we obtain

Xm+L rxm+L

p(X3, Xm) = f o(X X3, Xm) J P(X' X3, xm) dx' dx. (A17)
xm-L x

It can be checked that p(X3, Xm) actually depends only on the
single variable X3 -Xm* This formula expresses the influence of the
bead on whether the free head binds in front of, or behind, the bound
head.

The model equations in the limit of
fast bead diffusion

d MO_ -(13b + 3f) ac MO
dtkNo J (3b + O3f) -aJc NoJ

d (M' (-(3b+Of) a Ml
dt N, (j3b + O3f) -aJt VN,

0

d M2 =_-(-b+1f) a M2
dtkN2 (b+ Odf) -a})N2)

(A26)

+ O a/4 'MO0
(3b + O3f)/4 °0 JNOJ

The steady-state solutions for (MO, No) that normalize to Mo + No = 1 are:

For a 0.5-,um bead diffusing against a 0.5 pN/nm spring, the time to
diffuse the 8-nm distance between binding sites is very small: TD -10'
s. Thus, the bead diffusion can be taken as much faster than the hy-
drolysis cycle:

a

MO- a + + 3fI
a= Ob + Of

N0=a + I3b + Off
(A27)

Adding the equations for Ml and N1, we find the mean velocity of the motor,
L(d/dt)(M, + N1), which simplifies to:

I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a < 2D3/L2; 13(y) <z 2D3/L2,

then we may assume that the bead equilibrates rapidly with the effective
potential that it feels in each state. Accordingly, we can average over

all possible positions of the bead, which simplifies the model consid-
erably. This averaging has no influence on state 11 (both heads bound),
because in this state the bead itself has no influence on the motion of
the motor. In state 01 or 10 (one head bound, one free), however, the
position of the bead does influence the probability that the free head will
reattach in front of the bound head. This relationship was determined
above (Eq. A.17).

Recall that p(x3, xm) actually depends only on the displacement x3 - XmI
which we shall henceforth denote X. We express this by writing
p(X3, Xm) = pi(x3 -Xm) = '(X). Likewise, dI01(x3, xm) = 0(x3 -Xm) =

Fol(X). Now the equilibrium probability density function for the bead in the
effective potential $0, is given by

exp(-4%ol (X)/kB 7)

I=fX. exp(- $01(X)/kB7) dX'
(A19)

This probability density can be used to compute the overall probability that
the free head binds in front of the back head:

P(f) = PO M(X)p(X) dX. (A20)

Note that P depends of several parameters including the load force, f.
Now xm(t) is a sample path of a Markov process with the state diagram

shown in Fig. 6 c. Let C,(t) be the probability of finding the system in state
j at time t. For integer values of j, Cj(t) and C,+,12(t) obey the following
equations

d = aPCj;l/2 + a(' - P)Cj+l2 - (f3b + I3f)Cj

=-bCj + /3fCj+l- aCj+1/2.

From these, we can derive equations for the moments

Mk= jjkC Nk = (i+)2 C+l.
j=-00 j=-x0

(A21)

aL (2(a. + y) [ 2J
(A28)

where y 13b + Of3, 8 (b - of, and where P is computed from the integral
(A.20). In the limit P -. 1, f -O 0, -* oo, the motion of the motor becomes

a Poisson birth process with mean velocity (v) = Lob.
Evaluation of the variance is more difficult. We have

var = L2[(M2 + N2) - (M1 + N1)2]

d var Lj- (M2 + N2) - 2(M1 + N1) (MI + NI)]

After some algebra, we find:

d a l N
-var = ~+2M 0N 01-aP--II

dt 2a++y [2 2M o No]

Now the steady values of Mo and No have already been given above: Mo
a/(a + y), No = y/I(a + y), and a separate computation using the first-
moment equations shows that

{Ml N (P-/2)Y - (a/y)(8/2)

p-.o \MO NoJ a + -y

Combining these results, we find that

d
lim- var
t-o dt

L2a y[r 4(a(P - ½)-8/2)(P2 )- (a/-y)(8/2))
=_- 1-(a+22 at + -y ( l)

(A29)

(A22) Thus, after an initial transient, the variance ofthe kinesin trajectories should settle
down to a straight line, var constant + slope X t, with the slope given by the
right-hand side of Eq. A.29.

Although it is not obvious by inspection, one can show (as a check) that
(A23) the right-hand side of Eq. A.29 is nonnegative, so the variance cannot de-

crease over time.

where

(A24)

(A25)
a(P-l/2)½)Mo

O JNoJ
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-L/2 -:,-z y -< L/2 (A18)

+
0 2a(P 1/2) Ml

(Ob Od 0 N,
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It is instructive to consider the special case P = 1 and of = 0, in which
the motor marches inexorably forward. Then

() a + Ob (A30)

d var = Lv)(1 + (Ib2
dt 2 ( (a + Ob)

which is minimized by setting a = (b, and maximized by letting a -X o or

Ob - oo. The minimum and maximum values are ½/2L(v) and L(v), respec-
tively, ½/2L(v) ' (d/dt)var ' L(v). Note that L(v) characterizes a Poisson
stepping process. This shows in a simple case how the two-step hydrolysis
cycle can reduce the variance of the kinesin trajectories. If the rate of in-
crease of the variance were measured as a function of load and/or ATP
concentration, such experiments would provide further data to constrain and
test the model.
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DISCUSSION

Session Chairperson: Steven Block
Scribe: F. Jon Kull

MALCOLM IRVING: At the end of your chapter in the
study book, you say this could be adapted to myosin. I won-
der if you could say briefly what kind of changes you would
have to make in this scheme.

GEORGE OSTER: A lot ... it turns out. At least with this
kind of stochastic model, the proportion of brownian motion
is a lot higher in myosin, because myosin spends most of its
time off. It sort of slaps the actin whereas kinesin kind of
grabs it and then lets go and then quickly rebinds. And so it
turns out with that kind of cycle, the model changes quite a
bit and we have not done all of the simulations so I don't want
to say too much about it. But it is different. That is to say,
in our hands the myosin looks much more Brownian driven
than elastically driven.

STAN LEIBLER: I have two short questions. How many
parameters do you have in your model, exactly? And, the
second question is, what are the data you cannot explain with
your model? Do you expect any data which you will not be
able to explain?

OSTER: The model parameters are the difference in reac-
tion rate between the front and back head, the step size (we
used an 8-nm step but you can try various stepping patterns),
and the total hydrolysis rate, which is a complicated partition
function. The dependence on load and power stroke is a com-
plicated partition function as well.

LEIBLER: But this is a function?

OSTER: Well, it is a number once you carry out the
integration.

LEIBLER: In this equation it is a function ...

OSTER: Yes, in this equation it is a function. But when you
put in a power stroke and the load, then you get a number.
By the way, the formula for the mean velocity nicely par-
titions into contributions from the reaction asymmetry and
the contribution by the power stroke. What was the other
question? What can't I explain? Well, there is probably a lot
I can't explain. [Steven Block suggests that the model will
not explain God.]

LEIBLER: Other than that, you can explain everything?


